Jump to content

Overzicht luchtremsysteem

From Derail Valley
Revision as of 17:10, 28 February 2025 by Nenad (talk | contribs) (Importing existing translations)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Om ervoor te zorgen dat treinen effectief kunnen vertragen, moet elk voertuig in de samenstelling relatief gelijktijdig remmen. Dit is mogelijk door het luchtremsysteem van de trein. Elk spoorvoertuig is uitgerust met aan elke zijde een luchtslang. Wanneer voertuigen aan elkaar zijn gekoppeld, zijn ook hun luchtleidingen op een handdruk-manier met elkaar verbonden. Op deze manier kan de machinist in een voorlopende cabine de gehele trein remmen met één enkele indirecte rembediening.

De lucht in het remsysteem wordt gepompt door compressoren aan boord van de aangedreven voertuigen en wordt door de hele trein verdeeld via een systeem van kranen, leidingen en slangen. Voor de eenvoud kan het systeem worden samengesteld uit drie afzonderlijke eenheden: hoofdreservoir, treinleiding en remcilinder.

Het hoofdreservoir is een opslagtank met een groot volume wat zich aan boord van aangedreven voertuigen bevindt. Het wordt meestal op een hoge druk gehouden door de ingebouwde compressor en dient om de rest van het luchtsysteem te voorzien van luchtdruk.

De treinleiding, onder druk gezet door het hoofdreservoir, is een systeem van kranen, leidingen en slangen die door een hele trein zijn verspreid. Bij elke koppeling kan de luchtstroom handmatig geopend of gesloten worden door een kraan aan de kopwand, de kopschotkraan genoemd. Dit gebeurt aan de uiteinden van de trein, om te voorkomen dat de luchtdruk in de buitenlucht ontsnapt. Onder normale bedrijfsomstandigheden houdt de treinleiding een druk van 5 bar aan.

Tot slot heeft elk individueel voertuig één of meerdere eigen remcilinders. Dit zijn reservoirs met een laag volume die druk uitoefenen op een zuiger, die de remschoenen van het voertuig tegen de wielen drukt, waardoor het voertuig vertraagt. Een gespecialiseerde regelklep reageert op veranderingen in de druk in de treinleiding en brengt de remcilinders dienovereenkomstig onder druk met lucht, vanuit hulpreservoirs op elk voertuig, tripleklep genoemd.

Door de remkraan van de trein te bedienen, regelt de machinist de treinleidingdruk, wat indirect invloed heeft op de hoeveelheid lucht die aan elke remcilinder in de trein wordt toegevoerd. Door de remkraan van de trein in de richting "remmen" te bewegen, blaast de machinist lucht uit de treinleiding naar de buitenlucht. De triplekleppen op elk voertuig laten de druk in het hulpreservoir in de remcilinder ontsnappen en zorgen zo voor een remming. Door de remkraan van de trein in de richting "lossen" te bewegen, zet de machinist de treinleiding onder druk met lucht uit het hoofdreservoir. Dit vult het hulpreservoir en de triplekleppen reageren door remcilinderdruk in de buitenlucht te lossen, waardoor de remmen worden gelost.

In case the connection between the vehicles is broken, full brakes will apply automatically on both remaining train parts. This safety feature is integral to the pressurized air brake system design. Brake pipe needs to be fully pressurized so that the brakes are released. When the brake pipe loses all pressure, brakes get fully applied. This is also one of the disadvantages of the system – before a train can be safely set in motion, it must be pressurized first. The longer the train, the longer it takes to pressurize the system, particularly the auxiliary reservoirs. With long trains, adding extra locomotives can help pressurize the system faster.

See also: Coupling, Rail Vehicle Types, Compressor, Lapping, Cylinder Leaks, Monitoring, Train Brake, Independent Brake, Dynamic Brake, Brake Shoes