Air Brake System Overview/ja: Difference between revisions
Importing existing translations |
Updating to match new version of source page |
||
Line 1: | Line 1: | ||
<languages /> | <languages /> | ||
<div class="mw-translate-fuzzy"> | |||
列車が効果的に減速できるようにするには、連結されている各車両がある程度同時にブレーキをかける必要があります。これは列車の空気ブレーキシステムによって実現されます。各鉄道車両には両端にブレーキ管ホースが装備されています。車両が連結されると、ハンドシェイク方式でブレーキ管も接続されます。これにより、先頭車両の運転士は、1台の貫通ブレーキ制御装置で列車全体のブレーキを操作することができます。 | 列車が効果的に減速できるようにするには、連結されている各車両がある程度同時にブレーキをかける必要があります。これは列車の空気ブレーキシステムによって実現されます。各鉄道車両には両端にブレーキ管ホースが装備されています。車両が連結されると、ハンドシェイク方式でブレーキ管も接続されます。これにより、先頭車両の運転士は、1台の貫通ブレーキ制御装置で列車全体のブレーキを操作することができます。 | ||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
ブレーキシステム内の空気は、動力車に搭載されている空気圧縮機によって送り込まれ、バルブ、パイプ、ホースからなるシステムを介して列車全体に供給されます。簡単に説明するなら、ブレーキシステムは、元空気タンク、ブレーキ管、ブレーキシリンダーの 3 つのユニットで構成されていると考えることができます。 | ブレーキシステム内の空気は、動力車に搭載されている空気圧縮機によって送り込まれ、バルブ、パイプ、ホースからなるシステムを介して列車全体に供給されます。簡単に説明するなら、ブレーキシステムは、元空気タンク、ブレーキ管、ブレーキシリンダーの 3 つのユニットで構成されていると考えることができます。 | ||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Main Reservoir ==== | |||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
元空気タンクは、動力車に搭載されている大容量の容器です。通常、搭載された空気圧縮機によって高圧に保たれ、システムの他の部分に圧縮空気を提供する役割を果たします。 | 元空気タンクは、動力車に搭載されている大容量の容器です。通常、搭載された空気圧縮機によって高圧に保たれ、システムの他の部分に圧縮空気を提供する役割を果たします。 | ||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Brake Pipe ==== | |||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
ブレーキ管は元空気タンクによって加圧され、列車全体に張られたバルブ、パイプ、ホースのシステムです。すべての連結箇所では、台枠に取り付けられたアングルコックと呼ばれるバルブによって空気の流れを手動で開閉できます。これは、圧縮空気が大気中に逃げるのを防ぐために、列車の端で行われます。通常の走行状態では、ブレーキ管は 5 bar の圧力を保持します。 | ブレーキ管は元空気タンクによって加圧され、列車全体に張られたバルブ、パイプ、ホースのシステムです。すべての連結箇所では、台枠に取り付けられたアングルコックと呼ばれるバルブによって空気の流れを手動で開閉できます。これは、圧縮空気が大気中に逃げるのを防ぐために、列車の端で行われます。通常の走行状態では、ブレーキ管は 5 bar の圧力を保持します。 | ||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Auxiliary Reservoirs ==== | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
Auxiliary reservoirs are medium volume vessels found on each individual vehicle. Pressurized by the brake pipe, they store pressure to be further fed to apply brakes, on demand. While auxiliary reservoirs can take a long time to charge, they are almost impossible to run out during regular operation. | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Brake Cylinders ==== | |||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
最後に、各車両には 1つ以上のブレーキシリンダーがあります。これらはピストンに圧力をかける低容積の容器で、車両のブレーキシューを車輪に押し付けて速度を低下させます。制御バルブはブレーキ管内の圧力の変化に反応し、各車両にある補助空気タンクと呼ばれる専用の容器からの空気でブレーキシリンダーをそれに応じて加圧します。 | 最後に、各車両には 1つ以上のブレーキシリンダーがあります。これらはピストンに圧力をかける低容積の容器で、車両のブレーキシューを車輪に押し付けて速度を低下させます。制御バルブはブレーキ管内の圧力の変化に反応し、各車両にある補助空気タンクと呼ばれる専用の容器からの空気でブレーキシリンダーをそれに応じて加圧します。 | ||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Train Charging ==== | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
Due to {{pll|Cylinder Leaks|leaks}}, no brake system components can remain pressurized indefinitely. It usually takes some time to bring the components of unused vehicles to their nominal, high pressure level, before they can be set in motion. The two biggest factors are the main reservoir, which will charge as quickly as the respective {{pll|Compressor|compressor}} can do it, and auxiliary reservoirs, which may take a long time to charge, depending on how many vehicles there are in the train. | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
Adding additional locomotives to the train to improve charging speeds is a viable option, as is {{pll|Compressor|revving the engine}}. | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Train Brake Application ==== | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
{{pll|Train Brake|Train brake}} is applied by a control device found in motorized rail vehicles. Doing so on a fully charged train functions by air getting dumped from the brake pipe to the atmosphere. This forces auxiliary reservoirs to feed their stored pressure to brake cylinders, pressing brake shoes against wheels. | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Train Brake Release ==== | |||
</div> | |||
<div class="mw-translate-fuzzy"> | |||
運転士は列車のブレーキレバーを操作することでブレーキ管の圧力を制御し、列車内の各ブレーキシリンダーに供給される空気の量に間接的に影響を与えます。列車のブレーキレバーを「ブレーキをかける」方向に動かすと、ブレーキ管から空気が大気中に放出されます。各車両の制御バルブは、補助空気タンク内の圧力をブレーキシリンダに放出し、ブレーキを作動させます。貫通ブレーキレバーを「ブレーキをゆるめる」方向に動かすと、運転士は元空気タンクからの空気でブレーキ管を加圧します。これにより補助空気タンクが再充填され、制御バルブが反応してブレーキシリンダーの圧力を大気中に放出し、ブレーキをゆるめます。 | 運転士は列車のブレーキレバーを操作することでブレーキ管の圧力を制御し、列車内の各ブレーキシリンダーに供給される空気の量に間接的に影響を与えます。列車のブレーキレバーを「ブレーキをかける」方向に動かすと、ブレーキ管から空気が大気中に放出されます。各車両の制御バルブは、補助空気タンク内の圧力をブレーキシリンダに放出し、ブレーキを作動させます。貫通ブレーキレバーを「ブレーキをゆるめる」方向に動かすと、運転士は元空気タンクからの空気でブレーキ管を加圧します。これにより補助空気タンクが再充填され、制御バルブが反応してブレーキシリンダーの圧力を大気中に放出し、ブレーキをゆるめます。 | ||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | |||
==== Automatic Stop Safety Mechanism ==== | |||
</div> | |||
<div lang="en" dir="ltr" class="mw-content-ltr"> | <div lang="en" dir="ltr" class="mw-content-ltr"> | ||
Crucial safety feature of the compressed air brake system is that, in case of vehicle connection getting severed, such as due to a {{pll|Derailing|derailment}}, brake pipe pressure will be lost, resulting in automatic full brake application on both remaining train parts. This is integral to the compressed air brake system design. | |||
</div> | </div> | ||
[[Category:Air Brake System|1]] | [[Category:Air Brake System|1]] |
Revision as of 00:27, 9 March 2025
列車が効果的に減速できるようにするには、連結されている各車両がある程度同時にブレーキをかける必要があります。これは列車の空気ブレーキシステムによって実現されます。各鉄道車両には両端にブレーキ管ホースが装備されています。車両が連結されると、ハンドシェイク方式でブレーキ管も接続されます。これにより、先頭車両の運転士は、1台の貫通ブレーキ制御装置で列車全体のブレーキを操作することができます。
ブレーキシステム内の空気は、動力車に搭載されている空気圧縮機によって送り込まれ、バルブ、パイプ、ホースからなるシステムを介して列車全体に供給されます。簡単に説明するなら、ブレーキシステムは、元空気タンク、ブレーキ管、ブレーキシリンダーの 3 つのユニットで構成されていると考えることができます。
Main Reservoir
元空気タンクは、動力車に搭載されている大容量の容器です。通常、搭載された空気圧縮機によって高圧に保たれ、システムの他の部分に圧縮空気を提供する役割を果たします。
Brake Pipe
ブレーキ管は元空気タンクによって加圧され、列車全体に張られたバルブ、パイプ、ホースのシステムです。すべての連結箇所では、台枠に取り付けられたアングルコックと呼ばれるバルブによって空気の流れを手動で開閉できます。これは、圧縮空気が大気中に逃げるのを防ぐために、列車の端で行われます。通常の走行状態では、ブレーキ管は 5 bar の圧力を保持します。
Auxiliary Reservoirs
Auxiliary reservoirs are medium volume vessels found on each individual vehicle. Pressurized by the brake pipe, they store pressure to be further fed to apply brakes, on demand. While auxiliary reservoirs can take a long time to charge, they are almost impossible to run out during regular operation.
Brake Cylinders
最後に、各車両には 1つ以上のブレーキシリンダーがあります。これらはピストンに圧力をかける低容積の容器で、車両のブレーキシューを車輪に押し付けて速度を低下させます。制御バルブはブレーキ管内の圧力の変化に反応し、各車両にある補助空気タンクと呼ばれる専用の容器からの空気でブレーキシリンダーをそれに応じて加圧します。
Train Charging
Due to leaks , no brake system components can remain pressurized indefinitely. It usually takes some time to bring the components of unused vehicles to their nominal, high pressure level, before they can be set in motion. The two biggest factors are the main reservoir, which will charge as quickly as the respective compressor can do it, and auxiliary reservoirs, which may take a long time to charge, depending on how many vehicles there are in the train.
Adding additional locomotives to the train to improve charging speeds is a viable option, as is revving the engine .
Train Brake Application
Train brake is applied by a control device found in motorized rail vehicles. Doing so on a fully charged train functions by air getting dumped from the brake pipe to the atmosphere. This forces auxiliary reservoirs to feed their stored pressure to brake cylinders, pressing brake shoes against wheels.
Train Brake Release
運転士は列車のブレーキレバーを操作することでブレーキ管の圧力を制御し、列車内の各ブレーキシリンダーに供給される空気の量に間接的に影響を与えます。列車のブレーキレバーを「ブレーキをかける」方向に動かすと、ブレーキ管から空気が大気中に放出されます。各車両の制御バルブは、補助空気タンク内の圧力をブレーキシリンダに放出し、ブレーキを作動させます。貫通ブレーキレバーを「ブレーキをゆるめる」方向に動かすと、運転士は元空気タンクからの空気でブレーキ管を加圧します。これにより補助空気タンクが再充填され、制御バルブが反応してブレーキシリンダーの圧力を大気中に放出し、ブレーキをゆるめます。
Automatic Stop Safety Mechanism
Crucial safety feature of the compressed air brake system is that, in case of vehicle connection getting severed, such as due to a derailment , brake pipe pressure will be lost, resulting in automatic full brake application on both remaining train parts. This is integral to the compressed air brake system design.